亚洲国产精品久久久久婷蜜芽,caoporn国产精品免费视频,久久久久久久久免费看无码,国产精品一区在线观看你懂的

歡迎訪問深圳市中小企業(yè)公共服務(wù)平臺電子信息窗口

頭頂?shù)谌雽?dǎo)體的光環(huán),氮化鎵半導(dǎo)體正在實現(xiàn)新的突破

2023-02-07 來源:半導(dǎo)體行業(yè)觀察
4669

關(guān)鍵詞: 半導(dǎo)體 碳化硅 二極管

在科創(chuàng)板紅利、國產(chǎn)化、缺芯等因素的共同推動下,過去三年中國半導(dǎo)體行業(yè)取得了長足發(fā)展,其中在氮化鎵(GaN)和碳化硅(SiC)為代表的第三代半導(dǎo)體材料領(lǐng)域,因國內(nèi)和海外的技術(shù)代差并不大,存在彎道超車機會,備受資本關(guān)注。


01
頭頂?shù)谌雽?dǎo)體的光環(huán)


氮化鎵GaN由鎵(原子序數(shù) 31) 和氮(原子序數(shù) 7) 結(jié)合而來的化合物。它是擁有穩(wěn)定六邊形晶體結(jié)構(gòu)的寬禁帶半導(dǎo)體材料。



所謂禁帶,是指電子從原子核軌道上脫離所需要的能量,GaN的禁帶寬度為3.4eV,是傳統(tǒng)半導(dǎo)體材料硅的3倍多,所以說GaN 擁有寬禁帶特性。而禁帶寬度決定了一種材料所能承受的電場。

在電子電氣領(lǐng)域,氮化鎵其實是老選手了。氮化鎵材料具有較寬的禁帶以及較好的物理化學性質(zhì)與熱穩(wěn)定,可以更好地滿足 5G 技術(shù)、新能源汽車以及軍事探測等領(lǐng)域?qū)Ω吖β誓透邷亍⒏哳l耐高壓器件的需求,有著不錯的市場前景。

不過,氮化鎵最開始廣泛應(yīng)用的原因倒不是上述這些,而是它能發(fā)藍光的性質(zhì)。

從1990年開始,它便被用于發(fā)光二極管。GaN材料制作的藍光、綠光LED以及激光二極管早已實現(xiàn)了產(chǎn)業(yè)化生產(chǎn),日本和美國的三位科學家還因此獲得了2014年諾貝爾化學獎。到目前為止,光電領(lǐng)域依然是GaN的傳統(tǒng)強項。

關(guān)于氮化鎵,必須強調(diào)的是,所謂“第一代”、“第二代”和“第三代”半導(dǎo)體并非替代關(guān)系,下一代也不是全面領(lǐng)先于上一代。代際的劃分依據(jù)主要是時間的先后,氮化鎵只是在少數(shù)幾個領(lǐng)域領(lǐng)先于硅。

氮化鎵也不會完全取代硅的市場。

氮化鎵確實具有耐高壓、耐高溫、低能量損耗的特點,但成本昂貴,刻蝕困難?,F(xiàn)有的半導(dǎo)體產(chǎn)業(yè)鏈都是圍繞硅片建立的,氮化鎵只能分到一塊很小的市場。目前來看,連1%都沒有。相比起來,碳化硅的產(chǎn)業(yè)化則要成熟得多。

另外,氮化鎵和碳化硅各有側(cè)重,又和硅材料形成差異化競爭。碳化硅側(cè)重高壓,氮化鎵側(cè)重高頻,應(yīng)用場景也不盡相同。


02
跌跌撞撞的發(fā)展過程


截至2021年底,中國已有應(yīng)用在電力電子和射頻領(lǐng)域的氮化鎵晶圓產(chǎn)線各10條,多家中國本土企業(yè)已擁有了一定的氮化鎵晶圓制造水平。

和其他半導(dǎo)體材料類似,氮化鎵產(chǎn)業(yè)鏈可以分為襯底、外延和器件等幾個環(huán)節(jié)。不過,氮化鎵產(chǎn)業(yè)化過程中困難和問題更多,發(fā)展也更為緩慢,且困難主要集中在襯底和外延環(huán)節(jié)。

材料自身的性質(zhì)來看,氮化鎵高溫下會分解,不能使用單晶硅生產(chǎn)工藝的傳統(tǒng)直拉法拉出單晶,需要純靠氣體反應(yīng)合成,而氮氣性質(zhì)非常穩(wěn)定,鎵又是非常稀有的金屬,兩者反應(yīng)時間長,速度慢,反應(yīng)產(chǎn)生的副產(chǎn)物多。生產(chǎn)GaN對設(shè)備要求苛刻,技術(shù)復(fù)雜,產(chǎn)能極低。

氮化鎵產(chǎn)業(yè)鏈上游原材料包括氮化鎵襯底及氮化鎵外延片,原材料成本較高,進口依賴嚴重,國產(chǎn)化率約10%。在襯底領(lǐng)域,氮化鎵襯底依然存在著嚴重的技術(shù)困難,一片2英寸的氮化鎵晶片,在國際市場上的售價高達5000美元,而且一片難求。

因此,大多數(shù)廠商被迫采用“移花接木”的方式,用碳化硅或藍寶石作為氮化鎵的襯底材料。這樣做雖然襯底環(huán)節(jié)工藝簡單些,成本低一些,但由于這倆本來就不是一個物質(zhì),好比鋼鐵上粘木頭,容易出現(xiàn)裂紋、曲翹等缺陷,這可就苦了做外延的兄弟們。

當前,氮化鎵外延片的品質(zhì)和良率幾乎決定了氮化鎵器件產(chǎn)品的性能和良率。并且外延片成本也占到整個氮化鎵價值鏈的近50%,良率的問題也遲遲得不到解決。這些困難共同導(dǎo)致了氮化鎵極低的產(chǎn)能和極高的成本,從而限制了其的廣泛使用。


03
氮化鎵半導(dǎo)體迎來新突破


如今采用了寬禁帶材料的功率半導(dǎo)體已經(jīng)開始實用化。據(jù)悉,美國特斯拉(Tesla)的電機(Motor)驅(qū)動逆變器(Inverter)采用了碳化硅半導(dǎo)體。此外,應(yīng)該也有不少讀者在家電銷售中心等處見過一些采用了氮化鎵半導(dǎo)體的極小型交流轉(zhuǎn)換器(AC Converter)。在高電壓工作情況下,以寬禁帶材料制成的功率半導(dǎo)體的內(nèi)部線路的電氣性能和有效性遠遠高于硅材質(zhì)的傳統(tǒng)半導(dǎo)體。

對已經(jīng)實現(xiàn)實用化的碳化硅半導(dǎo)體和氮化鎵半導(dǎo)體而言,應(yīng)用終端對其耐電壓(Rated Voltage,比額定電壓高,是為維持信賴性的基本電壓)的要求不同,分別如下,碳化硅耐電壓1000V以上,氮化鎵耐電壓1000V以下?;谏鲜鰠^(qū)分,功率半導(dǎo)體廠家和研發(fā)企業(yè)之間形成了“無言的默契”。

然而,上述情況很有可能發(fā)生變化。由于氮化鎵材料可大幅度降低晶圓的缺陷(錯位)密度,因此可以提高應(yīng)用終端的性能、效率,且遠優(yōu)于碳化硅材料,所以,氮化鎵有望實現(xiàn)大范圍量產(chǎn)。如今,研發(fā)人員正在努力積累相關(guān)數(shù)據(jù),以證實上述結(jié)論。日本大阪大學的森勇介教授位于上述研發(fā)活動的最前沿。


氮化鎵功率半導(dǎo)體雖然適用性極高,但依然面臨三項社會問題

僅從物理特性來看,氮化鎵比碳化硅更適合做功率半導(dǎo)體的材料。

研發(fā)人員還比較了碳化硅和氮化鎵的“Baliga性能指數(shù)(半導(dǎo)體材料相對于硅的性能數(shù)值,即硅為1)”,4H-SiC為500,氮化鎵為900、效率極高。此外,碳化硅的絕緣破壞電場強度(表示材料的耐電壓特性)為2.8MV/cm,氮化鎵更高,為3.3MV/cm。一般情況下,低頻工作時的功耗損失是絕緣破壞電場的三次方,高頻工作時的功耗損失是絕緣破壞電場的2次方,成反比例關(guān)系,所以,氮化鎵的功率損耗更低(工作效率更高)。

那么,為什么在耐高電壓應(yīng)用領(lǐng)域,碳化硅的實用化早于氮化鎵呢?理由如下,在制作MOS FET時,碳化硅更易于形成二氧化硅(SiO2)、“氮化鎵晶圓面臨三大問題點”(森教授)。(下圖1)



圖1:日本大阪大學森勇介列舉的氮化鎵晶圓面臨的問題點。(圖片出自:日本大阪大學)


第一個問題,由于 Bulk Wafer(氮化鎵體塊)的尺寸較小,因此之前僅能生產(chǎn)出低成本的晶圓產(chǎn)品,某些產(chǎn)品甚至無法滿足測試要求。一直以來,都僅能生產(chǎn)出2英寸晶圓,如今終于可以生產(chǎn)出4英寸晶圓。業(yè)界普遍認為只有6英寸以上的大尺寸晶圓才可以滿足功率半導(dǎo)體的批量生產(chǎn)需求,所以如今還沒有達到可以量產(chǎn)的要求。另外,上文中提到的小型交流轉(zhuǎn)換器(AC Converter)所采用的氮化鎵功率半導(dǎo)體采用的晶圓如下,在最大尺寸為6英寸的硅(Si)襯底上形成氮化鎵層。但是,由于硅和氮化鎵的結(jié)晶常數(shù)(Lattice Constant)不同,因此氮化鎵層的缺陷密度較高、無法形成可以滿足耐高電壓、大電流的縱型FET,也無法制作高性能的橫型HEMT。

第二個問題,作為結(jié)體塊式(Bulk)的氮化鎵晶圓本身質(zhì)量不高。如今的結(jié)晶塊晶圓的最大錯位密度高達106/平方厘米,這種水平的密度水平是不適合功率半導(dǎo)體生產(chǎn)的。但是,2英寸晶圓的傾斜角(Off)的分布(是反映晶圓翹曲度的指標)為0.2度,很難實現(xiàn)大尺寸化和低成本化。但是,上述低質(zhì)量的晶圓適合用于光學半導(dǎo)體的生產(chǎn)。不過,對于功率半導(dǎo)體而言,電流需要在晶圓的大部分區(qū)域流通,所以,錯位缺陷成為了耐高電壓、電流量、生產(chǎn)良率低的主要原因。要適用于功率半導(dǎo)體,需要滿足以下錯位密度要求:耐高電壓范圍需要為0.65~3.3kV,單個芯片(Chip)的電流量為100A以上,生產(chǎn)良率要達到90%(必須實現(xiàn)較低的錯位缺陷、較低的翹曲度)。

第三個問題,晶圓價格高昂。如今,2英寸晶圓的價格為10萬日元一一20萬日元(約人民幣5220元一一10440元)。之所以價格如此高昂,理由如下:還沒有確立一項技術(shù),可以以較高的良率生產(chǎn)出大尺寸晶圓。尺寸為6英寸、價格在10萬日元(約人民幣5220元)以下的晶圓才適用于功率半導(dǎo)體的量產(chǎn)。


成功獲得適用于量產(chǎn)功率半導(dǎo)體的、高質(zhì)量、大尺寸氮化鎵晶圓

氮化鎵晶圓之所以面臨上述問題的根本原因在于氮化鎵結(jié)晶的生長方法。如今量產(chǎn)的體塊式(Bulk)氮化鎵晶圓的制作方法如下,在藍寶石襯底(Sapphire)上用一種名為HEPV(Hydride Vapor Phase Epitaxial,氫化物氣相外延法,以下簡稱為:“HVPE”)的氣相外延法生成氮化鎵結(jié)晶。如果把藍寶石等用作結(jié)晶生長的基礎(chǔ)材料,由于氮藍寶石材料與氮化鎵的結(jié)晶常數(shù)(Lattice Constant)不同,因此會發(fā)生大批量的錯位缺陷。此外,利用“HVPE”,由于是在1000度的高溫下生成結(jié)晶的,所以在生長后常溫冷卻時,整個晶圓會出現(xiàn)翹曲,出現(xiàn)傾斜角(Off)。

此外,有一種名為“氨熱法(Ammono-thermal)”的結(jié)晶方法,該方法可生成高質(zhì)量的結(jié)晶,不同于體塊式(Bulk)氮化鎵晶圓量產(chǎn)工藝中使用的“HVPE”法?!鞍睙岱ā弊鳛橐环N生成人工水晶結(jié)晶的方法,采用的是水熱合成法(已實現(xiàn)工業(yè)化應(yīng)用)。提高壓力容器內(nèi)氨的溫度和壓力,使其處于超臨界狀態(tài),溶解氮化鎵多結(jié)晶,再在氮化鎵種晶(Seed Crystal)上沉淀出單晶。以氮化鎵晶種為基礎(chǔ)材料、并采用液相生長法,可制作出高質(zhì)量的單結(jié)晶。“但是,利用氨熱法,在結(jié)晶生長過程中,一旦出現(xiàn)穩(wěn)定的表面,就會停止生長。基于上述現(xiàn)象的存在,雖然可以制作4英寸晶圓,要想制作出更大尺寸的晶圓,還需要時間的積累?!保ㄉ淌冢?/span>

然而,以往無法制作出高質(zhì)量體塊式(Bulk)氮化鎵晶圓,近年來情況有了顯著改善。已經(jīng)確立了可以制造出高質(zhì)量、低成本體塊式(Bulk)氮化鎵晶圓的技術(shù)。日本大阪大學、豐田合成株式會社合作研發(fā)了一項可解決上述課題的新技術(shù)(下圖2),該技術(shù)融合了“Na Flux法(鈉助溶劑法,利用該方法生長氮化鎵結(jié)晶)”和“Point Seed 法(點籽晶法,利用該方法實現(xiàn)大尺寸晶圓)”。



圖2:融合“Na Flux(鈉助溶)法”和“Point Seed(點籽晶)法”,使大尺寸體塊式(Bulk)氮化鎵晶圓的制作成為可能。(圖片出自:日本大阪大學)


“Na Flux(鈉助溶)法”指的是將鈉/鎵溶液暴露于氣壓為30一一40的氮氣中,將氮溶解于溶液,并使其成為飽和狀態(tài),從而使氮化鎵結(jié)晶析出。這是日本東北大學山根久典教授于1996年研發(fā)出的技術(shù)?!癗a Flux(鈉助溶)法”的特點是,即使晶種質(zhì)量較低,也可以在其表面形成高質(zhì)量的結(jié)晶。但是,僅靠該方法,雖然可以依靠一個小點形成完美的結(jié)晶,卻無法形成大尺寸結(jié)晶。于是,利用“Point Seed(點籽晶)法”,形成大尺寸的晶圓。即在大塊基材上大面積分布晶種,在結(jié)晶生長過程中,分別合體,形成單結(jié)晶。

據(jù)森教授表示,利用上述方法,可以獲得適用于功率半導(dǎo)體量產(chǎn)的理想結(jié)晶,其錯位密度為104/cm2以下,6英寸晶圓傾斜角分布為0.2度。此外,也已經(jīng)成功制成了6英寸體塊式(Bulk)氮化鎵襯底(該尺寸為全球最大)。而且,如果使用尺寸更大的基材、更多的晶種的話,還可以制作出10英寸晶圓,且生產(chǎn)量不會降低。

此外,還有另一種方法,即以體塊式(Bulk)氮化鎵襯底為晶種,使用“氨熱法”,可制作出高質(zhì)量、大尺寸的體塊式(Bulk)襯底(如下圖3)。針對上述方法,森教授指出:“成本堪比現(xiàn)有的碳化硅襯底,且可以實現(xiàn)較大尺寸?!比毡敬筅娲髮W和豐田合成株式會社等企業(yè)已經(jīng)參加日本環(huán)境省提出的“令和四年度 為進一步實現(xiàn)碳中和,加速推進應(yīng)用和普及零部件和材料”項目,近期,三菱化學株式會社(擁有“氨熱法”技術(shù))也加入了該項目,諸多企業(yè)的加入將更有助于項目的實施和驗證。



圖3:融合“Na Flux(鈉助溶)法”和“氨熱法”。“Na Flux(鈉助溶)法”的優(yōu)勢是可使晶圓實現(xiàn)較大的尺寸、較高的質(zhì)量;“氨熱法”的優(yōu)勢是可提高晶圓質(zhì)量。二者融合后,可以獲得比碳化硅成本更低的的氮化鎵晶圓。(圖片出自:日本大阪大學)




可成功提高元件的性能、良率

據(jù)森教授表示,使用由“Na Flux(鈉助溶)法”和“Point Seed(點籽晶)法”制成的氮化鎵襯底后發(fā)現(xiàn),氮化鎵元件的性能、良率普遍得到提高。

日本大阪大學和松下集團合作,利用Na Flux(鈉助溶)法,以體塊(Bulk)襯底為基礎(chǔ)制作了縱型氮化鎵FET,并從芯片OFF性能的角度考察了成品率。以市場上銷售的氮化鎵襯底制成芯片的成品率僅為33%,而利用上述方法,則可使成品率大幅度提升至72%。此外,上述成果是基于實驗室基礎(chǔ)獲得的,未來還有很大提升余地。

此外,研究人員已經(jīng)開始利用“OVPE法(Oxide Vapor Phase Epitaxy,氧化物氣相外延法,簡稱為:OVPE,可用于制作超低電阻的晶圓,由日本大阪大學研發(fā)、松下集團推進其實用化)”,在由“Na Flux(鈉助溶)法”和“Point Seed(點籽晶)法”制成的晶種上生長氮化鎵結(jié)晶,以研發(fā)更高性能的縱型氮化鎵FET。制成的晶圓的電阻約為10-4Ωcm2,遠低于碳化硅晶圓(10-3Ωcm2左右)、錯位密度為104/cm2、氮化鎵膜厚超過1毫米。研究人員獲得了一塊晶圓,該晶圓有望實現(xiàn)縱型FET。與碳化硅基的縱型MOS FET相比,在性能方面,縱型FET具有更高的潛力(下圖4)。與利用傳統(tǒng)的體塊式氮化鎵晶圓制成的芯片相比,實驗制作的二極管的ON電阻值降低了50%,縱型FET的OFF電阻值降低了15%(甚至更高)。


圖4:功率半導(dǎo)體的性能和晶圓特性的關(guān)系。利用“OVPE法”,可降低晶圓的電阻。(圖片出自:日本大阪大學)



在日本環(huán)境省的項目中,為實現(xiàn)在電動汽車驅(qū)動逆變器中的應(yīng)用,日本大阪大學著力研發(fā)具有超低電阻、高質(zhì)量、大尺寸的體塊氮化鎵襯底以及相關(guān)其他產(chǎn)品、模組。